Large-scale Sequence Search using Exact Indices (k-mer sets as de Bruijn graphs)

A fundamentally different approach

Our initial idea — the Bloom Filter is limiting. What can we get by replacing it with a *better* AMQ

A General-Purpose Counting Filter: Making Every Bit Count

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro Stony Brook University Stony Brook, NY, USA {ppandey, bender, rob, rob.patro}@cs.stonybrook.edu

SIGMOD 2017

Interesting observation about patterns of k-mer occurrence

Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index

Prashant Pandey¹, Fatemeh Almodaresi¹, Michael A. Bender¹, Michael Ferdman¹, Rob Johnson^{2,1}, and Rob Patro¹

¹ Computer Science Dept., Stony Brook University
{ppandey,falmodaresit,bender,mferdman,rob.patro}@cs.stonybrook.edu
² VMware Research
robj@vmware.com

RECOMB 2018 & Cell Systems (https://doi.org/10.1016/j.cels.2018.05.021)

The CQF

Approximate *Multiset* Representation

Works based on quotienting* & fingerprinting keys

Let k be a key and h(k) a p-bit hash value

Clever encoding allows low-overhead storage of element counts

Careful engineering & use of efficient rank & select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)

The CQF

Approximate *Multiset* Representation

Clever encoding allows low-overhead storage of element counts

Careful engineering & use of efficient rank & select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)

- (use key slots to store values in base 2^r-1; smaller values \Rightarrow fewer bits)

The CQF

Approximate *Multiset* Representation

Works based on quotienting* & fingerprinting keys

Let k be a key and h(k) a p-bit hash value

Clever encoding allows low-overhead storage of element counts

Careful engineering & use of efficient rank & select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)

- (use key slots to store values in base 2^r-1; smaller values \Rightarrow fewer bits)

k-mers, there are usually *many* fewer.

Observation 2 : These patterns of occurrence are far from uniform. Specifically, k-mers don't occur independently, occurrences are highly correlated.

Why?

https://github.com/splatlab/mantis

Mantis

Observation 1 : If I want to index N k-mers over E experiments, there are $\leq \min(N, 2^{|E|})$ possible distinct "patterns of occurrence" of the

k-mers, there are usually *many* fewer.

Observation 2 : These patterns of occurrence are far from uniform. Specifically, k-mers don't occur independently, occurrences are highly correlated.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present in an experiment at moderate to high abundance, we will likely observe all of it's k-mers.

https://github.com/splatlab/mantis

Mantis

Observation 1 : If I want to index N k-mers over E experiments, there are $\leq \min(N, 2^{|E|})$ possible distinct "patterns of occurrence" of the

Mantis

k-mers, there are usually *many* fewer.

Observation 2 : These patterns of occurrence are far from uniform. Specifically, k-mers don't occur independently, occurrences are highly correlated.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present in an experiment at moderate to high abundance, we will likely observe all of it's k-mers.

What if we add a layer of indirection: Store each distinct pattern (color class) only once. *label* each pattern with with an index, s.t. frequent patterns get small numbers (think Huffman encoding)

David Wheeler approves ... we think.

https://github.com/splatlab/mantis

Observation 1 : If I want to index N k-mers over E experiments, there are $\leq \min(N, 2^{|E|})$ possible distinct "patterns of occurrence" of the

The Mantis Index: Core Idea CQF Input Experiments

No tree!

- Build a CQF for each input experiment (can be different sizes, since CQFs of different sizes are mergeable)
- Combine them via multi-way merge
- CQF : key = k-mer, value = color class ID
- Estimate a good ordering of color class IDs from first few million k-mers

*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 233–242.

Why does this work?

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments

Same as idea from Rainbowfish*

Label	Equivalence Class	Freq.
0	0110010101	3
1	0011110000	1
2	111110101	2
3	1010101011	1
4	1110000001	1

Equivalence Bitvector

*Almodaresi et al. 2016 This idea is briefly discussed in BFT paper

000 001 010 000 010 011 100 000

Label Bitvector

Same as idea from Rainbowfish*

Label	Equivalence Class	Freq.
0	0110010101	3
1	111110101	2
2	0011110000	1
3	10101011	1
4	111000001	1

Equivalence Bitvector

000 010 001 000 001 011 100 000

Label Bitvector

Same as idea from Rainbowfish*

Label	Equivalence Class
0	0110010101
1	111110101
2	0011110000
3	101010111
4	1110000001

Equivalence Bitvector

Label Bitvector

Mantis : Comparing to SSBT

Construction Time — How long does it take to build the index? **Index Size** — How large is the index, in terms of storage space? **Query Performance** — How long does it take to execute queries?

an invertible hash, the CQF is *exact*.

Mantis is compact enough that we can *exactly* rather than approximately index the k-mers in our experiment set.

- **Result Accuracy** How many FP positives are included in query results?

- *Bonus:* If the remainder + quotient bits = original key size & we use
- This lets us ask useful questions about how other approaches perform.

Mantis: Construction Time & Index Size

Indexed 2,652 human RNA-seq (gene expression) experiments ~4.5TB (GZip compressed) of data

Table 1. Time and Space Me

Build time

Representation size

- Mantis can be constructed ~6x faster than a comparable SSBT
- The final Mantis representation is ~20% smaller than the comparable SSBT representation.

Note: both results assume you already have per-experiment AMQs (either Bloom Filters or CQFs)

easurement for Mantis and SSBT					
Mantis SSBT					
16 hr 35 min	97 hr				
32 GB	39.7 GB				

Mantis : Query Speed

Querying for the presence of randomly selected genes across all 2,652 experiments.

	Mantis	S
10 Transcripts	25 s	3
100 Transcripts	28 s	14
1000 Transcripts	1 min 3 s	2

Mantis is ~6 — 109x faster than (in memory) SSBT

Note: Mantis doesn't require a θ threshold for queries, though one can be applied *post hoc*.

A Mantis query returns, for each experiment containing at least one query k-mer, the *fraction* (true θ) of query k-mers contained in the experiment.

Mantis : Query Quality

Querying for the presence of randomly selected genes across all 2,652 experiments. SSBT $\theta = 0.8$

	Both	Only Mantis	Only SSBT	Precision			
10 Transcripts	2,018	19	1,476	0.577			
100 Transcripts	22,466	146	10,588	0.679			
1000 Transcripts	160,188	1,409 95,606		0.626			
"Both" means the number of those experiments that are reported by both							
Mantis and SSBT.	"Only Mar	ntis" and "Only	SSBT'' mean	the number of			
experiments reported by only Mantis and only SSBT. All three query							
benchmarks are taken from Table 2 for $\theta = 0.8$.							

• Recall : Mantis is exact! Returns *only* experiments having $\ge \theta$ fraction of the query k-mers.

Mantis : Query Quality

Querying for the presence of randomly selected genes across all 2,652 experiments. SSBT $\theta = 0.8$

	Both	Only Mantis	Only SSBT	Precision
10 Transcripts	2,018	19	1,476	0.577
100 Transcripts	22,466	146	10,588	0.679
1000 Transcripts	160,188	1,409	95,606	0.626

fraction of the query k-mers.

Due to a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover this b/c of Mantis' examples a small number of corrupted SSBT filters — able to discover the state of the

• Recall : Mantis is exact! Returns *only* experiments having $\geq \theta$

Some Remaining Challenges

- We demonstrate indexing on the order of 10³ experiments, we really want to index on the order of 10⁵ - 10⁶
- Can be made approximate while providing strong bounds :

Theorem 1. A query for q k-mers with threshold θ returns only experiments containing at least $\theta q - O(\delta q + \log n)$ queried *k*-*mers w*.*h*.*p*.

but maybe not enough

Key Observation:

- K-mers grow at worst linearly
- Color classes increase super-linearly

Need a **fundamentally better** color class encoding; exploit coherence between rows of the color class matrix

It improves greatly upon existing solutions; takes a different approach

Consider the following color class graph

Each color class is a vertex

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.

Every pair of color classes is connected by an edge whose weight is the hamming distance between the color class vectors

Consider the following color class graph

Each color class is a vertex

is the hamming distance between the color class vectors

Every pair of color classes is connected by an edge whose weight

Consider the following color class graph

Each color class is a vertex

is the hamming distance between the color class vectors

Unfortunately: 1) There are *many* color classes (full graph too big) 2) They are high-dimensional (# of experiments), neighbor search is very hard (LSH scheme seem to work poorly)

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.

Every pair of color classes is connected by an edge whose weight

Mantis implicitly represents a colored dBG

Each CQF key represents a kmer \rightarrow can explicitly query neighbors Each k-mer associated with color class id \rightarrow vector of occurrences

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

1	
0	
1	
0	
1	

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

1	
0	
1	
0	
1	

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

- Use the **de Bruin graph** (dBG) as an efficient guide for near-neighbor search in the space of color classes!
- dBG common in genomics. Nodes u,v are k-mers & are *adjacent* if k-1 suffix of u is the same as k-1 prefix of v

CCG derived from dbG

Complete CCG

Optimal MST

MST on our Graph

0
0
0
0
0

Augment with all 0 color class to guarantee one, connected MST

Augment with all 0 color class to guarantee one, connected MST

Augment with all 0 color class to guarantee one, connected MST

To reconstruct a vector, walk from your node to the root, flipping the parity of the positions you encounter on each edge.

The MST approach scales very well

				М	ST			
Dataset	# samples	RRR	Total	Parent	Delta	Boundary	$\frac{\text{size}(MST)}{\text{size}(BBB)}$	
		matrix	space	vector	vector	bit-vector	Size(rerere)	
	200	0.42	0.15	0.08	0.06	0.01	0.37	••••
U acmiena	500	1.89	0.46	0.2	0.24	0.03	0.24	Improvement
n. suprens	1,000	5.14	1.03	0.37	0.6	0.06	0.2	over PPD improves
nnA-seq	2,000	14.2	2.35	0.71	1.5	0.14	0.17	over KKK improves
samples	5,000	59.89	7.21	1.72	5.1	0.39	0.12	with # of samples
	10,000	190.89	16.28	3.37	12.06	0.86	0.085	
Blood, Brain, Breast (BBB)	2586	15.8	2.66	0.63	1.88	0.16	0.17	

dataset from SBT / SSBT / Mantis paper

How does MST approach affect query time?

One concern is that replacing O(1) lookup with MST-based decoding will make lookup slow; does it?

How does MST approach affect query time?

One concern is that replacing O(1) lookup with MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes) keeps it just as fast as lookup in the RRR matrix

	Mantis with MST			Mantis		
	index load $+$ query	query	space	index load $+$ query	query	space
10 Transcripts	$1 \min 10 \sec$	$0.3 \sec$	118GB	$32 \min 59 \sec$	$0.5 \sec$	290 GB
100 Transcripts	$1 \min 17 \sec$	$8 \mathrm{sec}$	119GB	$34 \min 33 \sec$	$11 \mathrm{sec}$	290 GB
1000 Transcripts	$2 \min 29 \sec$	$79 \sec$	$120 \mathrm{GB}$	$46 \min 4 \sec$	$80 \sec$	290 GB

State-of-the-art marches on

Compressing generic annotations with the counting dBG

Mikhail Karasikov^{1,2,3}, Harun Mustafa^{1,2,3}, Gunnar Rätsch^{1,2,3,4,5,*}, and André Kahles^{1,2,3,*}

accessions, 1.7 Tbp) and the set of all Fungi (69,034 accessions, 8.8 Gbp).

Method	RefSeq (Fungi)	RefSeq (All)		
MegaBLAST	12.3 GB 11.19 bits/bp	2,359 GB 11.07 bits/bp		
This work	3.3 GB 2.97 bits/bp	533 GB 2.50 bits/bp		

Note RefSeq here is still reference genomes, << smaller than all "raw data", but notice the substantial space improvement over MegaBLAST. Also, the counting dBG allows actual alignment; not just k-mer matching

Lossless Indexing with Counting de Bruijn Graphs

Table 3. Lossless indexing of RefSeq (rel. 97) with k-mer coordinates for the complete data set (32,881,422)

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

A Call To Arms