
Large-scale Sequence Search using 
Exact Indices (k-mer sets as de Bruijn 

graphs)



A fundamentally different approach

RECOMB 2018 & Cell Systems (https://doi.org/10.1016/j.cels.2018.05.021)

SIGMOD 2017

Our initial idea — the Bloom Filter is limiting. 
What can we get by replacing it with a better AMQ

Interesting observation 
about patterns of k-mer occurrence

“I bet we can exploit 
that for large-scale search”

WABI 2017

https://doi.org/10.1016/j.cels.2018.05.021


The CQF
Approximate Multiset Representation 

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts 
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve 
collisions leads to a fast, cache-friendly  data structure

Let k be a key and h(k) a p-bit hash value

h(k)

p-bits

=

* Idea goes back at least to Knuth (TACOP vol 3)
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The CQF
Approximate Multiset Representation 

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts 
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve 
collisions leads to a fast, cache-friendly  data structure

Let k be a key and h(k) a p-bit hash value

h(k) }

q-bits

}
r-bits

p-bits

Determines position in array 
of size 2q r-bit slots

Value stored in

r-bit slot (fingerprint)

=

* Idea goes back at least to Knuth (TACOP vol 3)



Mantis 
Observation 1 : If I want to index N k-mers over E experiments, there 
are                         possible distinct “patterns of occurrence” of the  
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform. 
Specifically, k-mers don't occur independently, occurrences are 
highly correlated.

https://github.com/splatlab/mantis

Why? 

https://github.com/splatlab/mantis
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Mantis 
Observation 1 : If I want to index N k-mers over E experiments, there 
are                         possible distinct “patterns of occurrence” of the  
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform. 
Specifically, k-mers don't occur independently, occurrences are 
highly correlated.

What if we add a layer of indirection: Store each distinct pattern 
(color class) only once. label each pattern with with an index, s.t. 
frequent patterns get small numbers (think Huffman encoding)

https://github.com/splatlab/mantis

David Wheeler approves … we think.

Why?            Consider e.g. a gene G (~1000 k-mers).  If it is present  
in an experiment at moderate to high abundance, we will likely 
observe all of it’s k-mers.

https://github.com/splatlab/mantis


The Mantis Index: Core Idea

No tree!

•Build a CQF for each input experiment (can be different sizes, since 
CQFs of different sizes are mergeable)

•Combine them via multi-way merge
•CQF : key = k-mer, value = color class ID

Compressed using RRR*

•Estimate a good ordering of color class IDs from first few million k-mers
*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM 
symposium on Discrete algorithms, pages 233–242.



Why does this work?
The distribution of k-mers / color class is highly skewed

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments



Equivalence Bitvector

Label Equivalence Class Freq.
0 0110010101 3
1 0011110000 1
2 1111110101 2
3 1010101011 1
4 1110000001 1

Label Bitvector

Color 
Matrix

0
1
2
0
2
3
4
0

This idea is briefly discussed in BFT paper

*

Same as idea from Rainbowfish*

000 001 010 000 010 011 100 000

*Almodaresi et al. 2016
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Same as idea from Rainbowfish*

Equivalence Bitvector

Label Equivalence Class
0 0110010101
1 1111110101
2 0011110000
3 1010101011
4 1110000001

1 0 1 11 100 0

Label Bitvector
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Mantis : Comparing to SSBT

Bonus: If the remainder + quotient bits = original key size & we use 
an invertible hash, the CQF is exact.

Mantis is compact enough that we can exactly rather than 
approximately index the k-mers in our experiment set. 

This lets us ask useful questions about how other approaches perform.

Construction Time — How long does it take to build the index?

Index Size — How large is the index, in terms of storage space?

Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?



Mantis : Construction Time & Index Size

Note: both results assume you already have per-experiment 
AMQs (either Bloom Filters or CQFs)

• Mantis can be constructed ~6x faster than a comparable 
SSBT

Indexed 2,652 human RNA-seq (gene expression) experiments 
~4.5TB (GZip compressed) of data

•The final Mantis representation is ~20% smaller than the 
comparable SSBT representation.



Mantis : Query Speed
Querying for the presence of randomly selected genes across all 
2,652 experiments.

θ threshold for SSBT query

Note: Mantis doesn’t require a θ threshold for queries, though one 
can be applied post hoc. 

A Mantis query returns, for each experiment containing at least one 
query k-mer, the fraction (true θ) of query k-mers contained in the experiment.

• Mantis is ~6 — 109x faster than (in memory) SSBT



Mantis : Query Quality
Querying for the presence of randomly selected genes across all 
2,652 experiments. SSBT θ = 0.8

• Recall : Mantis is exact! Returns only experiments having ≥ θ 
fraction of the query k-mers.



Mantis : Query Quality
Querying for the presence of randomly selected genes across all 
2,652 experiments. SSBT θ = 0.8

Due to a small number of corrupted SSBT filters — able to discover this b/c of Mantis’ exact nature.

• Recall : Mantis is exact!  Returns only experiments having ≥ θ 
fraction of the query k-mers.



Some Remaining Challenges
๏ It improves greatly upon existing solutions; takes a different approach

๏ We demonstrate indexing on the order of 103 experiments, we 
really want to index on the order of 105 - 106

๏ Can be made approximate while providing strong bounds :

but maybe not enough

Need a fundamentally better color class encoding; exploit 
coherence between rows of the color class matrix

๏ K-mers grow at worst linearly  
๏ Color classes increase super-linearly

Key Observation:



Each color class is a vertex 

Every pair of color classes is connected by an edge whose weight 
is the hamming distance between the color class vectors

Consider the following color class graph
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Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.
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Unfortunately:  
1) There are many color classes (full graph too big) 
2) They are high-dimensional (# of experiments), neighbor 

search is very hard (LSH scheme seem to work poorly)
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Each CQF key represents a kmer → can explicitly query neighbors 
Each k-mer associated with color class id  → vector of occurrences
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Mantis implicitly represents a colored dBG
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Use the de Bruin graph (dBG) as an 
efficient guide for near-neighbor 
search in the space of color classes! 

dBG common in genomics. Nodes u,v 
are k-mers & are adjacent if k-1 suffix 
of u is the same as k-1 prefix of v
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The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2
2

1

Augment with all 0 color class to guarantee one, connected MST

0

0

0

0

0
1



The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes
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To reconstruct a vector, walk from your node to the root,  
flipping the parity of the positions you encounter on each edge.



The MST approach scales very well

dataset from SBT / SSBT / Mantis paper

Improvement  
over RRR improves 
with # of samples

now the  
k-mer table 

is the bottleneck



One concern is that replacing O(1) lookup with  
MST-based decoding will make lookup slow; does it?

How does MST approach affect query time?



One concern is that replacing O(1) lookup with  
MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)  
keeps it just as fast as lookup in the RRR matrix

How does MST approach affect query time?



State-of-the-art marches on
Making the Mantis index dynamic



Compressing generic annotations with the counting dBG

Note RefSeq here is still reference genomes, << smaller than all “raw data”, but notice the substantial  
space improvement over MegaBLAST. Also, the counting dBG allows actual alignment; not just k-mer matching



Data from: https://www.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi

A Call To Arms

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

Terabyte

Petabyte

“It seems that some essentially new … ideas are here needed” 
— Paul Adrien Maurice Dirac*

We can search this, but want to search this … and beyond


