| arge-scale Sequence Search using
Exact Indices (k-mer sets as de Bruijn

graphs)



A fundamentally different approach

Our initial idea — the Bloom Filter is limiting.
What can we get by replacing it with a better AMQ
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The CQF
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Works based on quotienting™ & fingerprinting keyé
Let k be a key and h(k) a p-bit hash value
h(k)
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Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2'-1; smaller values = fewer bits)

Caretul engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)
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The CQF
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Works based on quotienting™ & fingerprinting keyé

Let k be a key and h(k) a p-bit hash value _Determines position in array
of size 29r-bit slots

h(k) /_\ '
Value stored in

B r-bit slot (fingerprint)

q-bits r-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2'-1; smaller values = fewer bits)

Caretul engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



Viantis

Observation 1 : It | want to index N k-mers over E experiments, there

are < min (N, Z'E') possible distinct “patterns of occurrence” of the
k-mers, there are usually many fewer.

Observation 2 : These patterns of occurrence are far from uniform.
Specitically, k-mers don't occur independently, occurrences are
highly correlated.

Why?

https:/github.com/splatlab/mantis
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Viantis

Observation 1 : It | want to index N k-mers over E experiments, there

are < min (N, Z'E') possible distinct “patterns of occurrence” of the
k-mers, there are usually many fewer.

Observation 2 : These patterns of occurrence are far from uniform.
Specitically, k-mers don't occur independently, occurrences are
highly correlated.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present
N an experiment at moderate to high abundance, we will likely
observe all of its k-mers.

What if we add a layer of indirection: Store each distinct pattern
(color class) only once. label each pattern with with an index, s.t.
frequent patterns get small numbers (think Huffman encoding)

David Wheeler approves ... we think.

https:/github.com/splatlab/mantis
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Mantis
_>

E; Es E3 Ey
ACTG || ACTG
ACTT
CTTG || CTTG
TTTC || TTTC
GCGT || GCGT || GCGT
AGCC || AGCC
No tree!
SUl
CQFs of different sizes are mergeable)

e Combine them via multi-way merge

e CQF

e £stimate a good ordering of color class |

The Mantis Index: COre |dea

[nput Experiments

k-mer
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ACTT

CTTG
TTTC
GCGT

AGCC

Color ID

Color class table
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- key = k-mer, value = color class ID

Compressed using RRR*

d a CQF for each input experiment (can be different sizes, since

s from first few million k-mers

*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 233—-242.



Why does this work®

The distribution of k-mers / color class is highly skewed
10°

Number of k-mers in given color class
) S S S S S
N w BN (6] (o)} ~

-
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10° 10 102 103 104 10° 10° 10/ 108 10°
Color class id's in Mantis order

Billion k-mers from ~2,600 distinct sequencing experiments



Same as idea from Rainbowfish*

Color
Matrix
Label Equivalence Class Freq.
3
1

1111110101 2
1010101011 '
1110000001

Equivalence Bitvector

000 00T OTO 000 010 011 100 000

*Almodaresi et al. 2016 | abel Bitvector
This idea is briefly discussed in BFT paper
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Same as idea from Rainbowfish*

Color
Matrix

Label Equivalence Class
0110010101

1111110101

O 10 1 O 1T 11 100 O

Label Bitvector

1010101011
1110000001

Equivalence Bitvector

000 010 001 000 001 011100 000

Label Bitvector



Mantis : Comparing to SSBT

Construction Time — How long does it take to build the index?
Index Size — How large is the index, in terms of storage space”

Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?

Bonus: If the remainder + quotient bits = original key size & we use
an invertible hash, the CQF is exact.

Mantis Is compact enough that we can exactly rather than
approximately index the k-mers in our experiment set.

This lets us ask usetul questions about how other approaches pertorm.



Mantis : Construction Time & Index Size

Indexed 2,652 human RNA-seq (gene expression) experiments
~4.5TB (GZip compressed) of data

Table 1. Time and Space Measurement for Mantis and SSBT

Mantis SSBT
Build time 16 hr 35 min 97 hr
Representation size 32 GB 39.7 GB

e Mantis can be constructed ~6x faster than a comparable
SSB

e The final Mantis representation is ~20% smaller than the
comparable SSBT representation.

Note: both results assume you already have per-experiment
AMQs (either Bloom Filters or CQFs)




Mantis : Query Speed

Querying for the presence of randomly selected genes across all

2,652 experiments.
0 threshold for SSBT query

%\

Mantis SSBT (0.7) SSBT (0.8) SSBT (0.9)
10 Transcripts 25 s 3min8s 2mn25s 2min7/s
100 Transcripts 28s 14mnd55s 10miNn56s 7 min57s
1000 Transcripts 1miNn3s 2hr22min 1 hr54 min 1 hr 20 min

- Mantis is ~6 — 109x faster than (in memory) SSBT

Note: Mantis doesn’t require a 0 threshold for queries, though one
can be applied post hoc.

A Mantis query returns, for each experiment containing at least one
guery k-mer, the fraction (true 0) of query k-mers contained in the experiment.



Mantis : Query Quality

Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT 6 = 0.8

Both Only Mantis Only SSBT Precision

10 Transcripts 2,018 19 1,476 0.577
100 Transcripts 22,466 146 10,588 0.679
1000 Transcripts 160,188 1,409 95,606 0.626

“Both” means the number of those experiments that are reported by both
Mantis and SSBT. “Only Mantis” and “Only SSBT’’ mean the number of

experiments reported by only Mantis and only SSBT. All three query
benchmarks are taken from Table 2 for 6 = 0.8.

Recall : Mantis is exact! Returns only experiments having = 0
fraction of the query k-mers.



Mantis : Query Quality

Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT 6 = 0.8

Both Only Mantis |Only SSBT Precision

10 Transcripts 2,018 19 1,476 0.577
100 Transcripts 22,466 146 10,588 0.679
1000 Transcripts 160,188 | 1,409 95,606 0.626

~

- Recall : Mantis is exact! Returns only experiments having = 6
fraction of the query k-mers.

Due to a small number of corrupted SSBT filters — able to discover this b/c of Mantis’ ex:



Some Remaining Challenges

o It improves greatly upon existing solutions; takes a different approach

« We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 10¢

e Can be made approximate while providing strong bounds :

Theorem 1. A qguery for q k-mers with threshold 6 returns only experiments containing at least 0q—O(dq-+logn) queried
k-mers w.h.p.

but maybe not enough

Key Observation:

» K-mers grow at worst linearly
» Color classes increase super-linearly

Need a fundamentally better color class encoding; exploit
coherence between rows of the color class matrix



Consider the following color class graph

Fach color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

N - W -E 9

© BSOS - |O | -

© BEO BO O B

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.
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Consider the following color class graph

Fach color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

l 1 l | ! |
N o] build MST of | N |
" 3 this graph
N -_— N

© BE© BES BEO
—

© BE©S BO S B
—

Unfortunately:
1) There are many color classes (full graph too big)
2) They are high-dimensional (# of experiments), neighbor
search is very hard (LSH scheme seem to work poorly)

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.




Mantis implicitly represents a colored dBG

Each CQF key represents a kmer = can explicitly query neighbors
Each k-mer associated with color class id — vector of occurrences

L, b
W\
.

=
A=




Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent it k-1 suftix
of u is the same as k-1 prefix of v
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MST on our Graph

CCG derived from dbG

Optimal MST

Complete CCG

-

—




The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes

Augment with all O color class to guarantee one, connected MST

1
\{4}
2

1 2({2,4} (1.3)

{0} \I

To reconstruct a vector, walk from your node to the root,
flipping the parity of the positions you encounter on each edge.



The MST approach scales very well

2001
1501
m Representation
2 + CQF
‘o 1007 4 MST
B = RRR
>0 \ now the
k-mer table
01 is the bottleneck
0 2500 5000 7500 10000
# of samples
MST
Dataset # samples [ RRR| [ Total Parent Delta  Boundary Sslizzz((]lggg))
matrix space vector vector  bit-vector
200 0.42 0.15 0.08 0.06 0.01 0.37 -
| 500 1.89 0.46 0.2 0.24 0.03 0.24 Improvement
Iﬁ;ﬁf"‘e"’s 1.000 5.14 1.03 0.37 0.6 0.06 0.2 ver RRR imoroves
. IS; 4 2.000 14.2 2.35 0.71 1.5 0.14 0.17 . P
P 5000 | 59.89 7.21 1.72 5.1 0.39 012 with # of samples
10.000  |190.89 16.28 3.37 12.06 0.86 0.085
Blood. Brai
ood, Brain, 2586 15.8 2.66 0.63 1.88 0.16 0.17 )

Breast (BBB)

dataset from SBT / SSBT / Mantis paper



How does MST approach affect query time?

One concern is that replacing O(1) lookup with
MST-based decoding will make lookup slow; does it?



How does MST approach affect query time?

One concern is that replacing O(1) lookup with

MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LR
keeps it just as fast as loo

J over popular internal nodes)

<up in the RRR matrix

Mantis with MST Mantis
index load + query query space |index load + query query space
10 Transcripts 1 min 10 sec 0.3 sec 118GB| 32 min 59 sec 0.5 sec  290GB
100 Transcripts 1 min 17 sec 8 sec 119GB| 34 min 33 sec 11 sec  290GB
1000 Transcripts 2 min 29 sec 79 sec  120GB| 46 min 4 sec 80 sec  290GB




State-of-the-art marches on

(a) (b)
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. . . . 50
Making the Mantis index dynamic . 200
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Sequence analysis F 20 5 100
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large-scale sequence search using the Bentley-Saxe 0 0
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traHSformatlon # Samples # Samples
Fatemeh Almodaresi ©® ', Jamshed Khan ® ', Sergey Madaminov?, Michael Ferdma (c) (d)
Rob Johnson?, Prashant Pandey® and Rob Patro ® '-*
600
g 300 500
£ 2
: 200 .GE) 400
Le(\)/el :8088 M Le(\)/el :808 80 ] (—é i é 300
| ) = i
Le;el %% ] Insert Le;el %% ] 10000 15000 20000 25000 30000 35000 40000 10000 15000 20000 25000 30000 35000 40000
# Samples # Samples

S Sw EE . .

Vv VariMerge '/ V i'
+*|80880 ek T v kil ] 21 Z ¢ i?
evel | || .......... evel| [ £ p o f
L1 | - """"""""""" Mefge::-‘: L1 I { ] % 10 Eg % 100 6; é 100 =g
evel | [ .............. evel | [ g § g’ . g
e e e o B al . .0 é 3 i o
i e i evel | [ a Wz '9 , § 7% i'A
| (- - gil___ i B 7 omae v l Z s Y o o 7B

200 500 5k 10k 200 500 5k Ok 200 500 1k 2k 5k 10k

# Samples # Samples # Samples



Compressing generic annotations with the counting dBG

Lossless Indexing with Counting de Bruijn Graphs

Mikhail Karasikov!?3, Harun Mustafal?3, Gunnar Rétsch!?:3%%* and André Kahles!2:3:*

L1 L2 L3 & B - s 11101 (1112 13
TaA | [18] |15 [2: 11 i1 L3 '_15 ' 13- 15 18 15 1 1 L1 L2 L3

TAT 10 e L4 10 1 18]..[15
cer | [17(11 | 2: 14 | 2: 14 . e ~1|11]-15
ace | |16 16 1 16] 1
GGC 11 T - 11 1 10
CPP 1811 : :

1 |[-15 L] Universal coding

10 1 (e.g. Elias delta
or dac_vector)

TTA 18(10|15 Invertible sparsification of count annotations

Original counts Diff-transformed Multi-BRWT

L°(v) := L(v) — L(Vsyec |
(v) (v) — L( ) g Py

L(v) e N™

Table 3. Lossless indexing of RefSeq (rel. 97) with k-mer coordinates for the complete data set (32,881,422
accessions, 1.7 Tbp) and the set of all Fungi (69,034 accessions, 8.8 Gbp).

Method RefSeq (Fungi) RefSeq (All)

MegaBLAST||12.3 GB| 11.19 bits/bp||2,359 GB| 11.07 bits/bp
This work 3.3 GB|2.97 bits/bp|| 533 GB|2.50 bits/bp

Note RefSeq here is still reference genomes, << smaller than all “raw data”, but notice the substantial
space improvement over MegaBLAST. Also, the counting dBG allows actual alignment; not just k-mer matching



A Call To Arms
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"It seems that some essentially new ... ideas are here needed”
— Paul Adrien Maurice Dirac*

*Principles of Quantum Mechanics 2nd edition, Chapter XllI, Section 81 (p. 297) Data from: https://www.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi



